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ABSTRACT

-This thesis analyses data of and builds a simulation

model for the track of an underwater vehicle as perceived

by a test range of three dimensional short baseline sonar

arrays. In this way many random replications of track

become available quickly and inexpensively. These

simulations support a larger project whose object is to

monitor the performance of the test range and provide clues

for troubleshooting problems. In particular, joint values

of sensor array estimated displacement and reorientation

corrections are generated and their error distribution is

quantified.
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I. INTRODUCTION

The Naval Undersea Weapons Engineering Station (NUWES)

operates nine test ranges that serve a variety of purposes

for testing and validating the Navy's current and future

weapons systems. This thesis is in support of a larger

project whose goal is to monitor the performance of the

short baseline ranges (ie. those ranges in which each array

produces a three dimensional track of moving vehicles).

More specifically, it deals with the development of a

computer simulation which generates realistic random

replications of an underwater vehicle's track (ie. vehicle

position perceived by a sensor array on the range at a

number of equally spaced time points). Such simulations

serve to provide information about the inherent variability

in the output of the tracking range, especially for

assessing the calibration error. Its use can provide an

improved understanding of the processes involved and a

reduction in the frequency of range shutdown for the purpose

of resurveying the remote sensor locations.

When the simulated replicate tracks are passed to the

program KEYMAIN (a project FORTRAN program that estimates

displacement and orientation corrections to the range remote

sensor arrays), the output is used to generate bivariate

scatter plots of these corrections. Although extensive work

8



of this type was not possible in the current thesis, the

limited results indicate a surprising amount of variability

and suggest that the nature and extent of variability can

change noticeably with relatively minor changes in the

localized conditions. Considerable testing using this

simulation tool is clearly indicated.

The research reported here involves three general

activities:

(a) Analysis of real underwater track data to learn their
important behavioral characteristics.

(b) Simulation model formulation and construction.

(c) Development and programming of algorithms to merge
with the existing project programs to produce any
number of random replications with correction
estimates for each simulated track.

The organization of the thesis is as follows:

Section II contains explicit background material and

provides a framework for the research and shows how it

relates to the larger project. Section III explains the

data analysis procedures and results. The simulation model

is developed in Section IV and the interfacing with the

overall project programs is described in Section V. Results

and conclusions are detailed in Section VI, with areas for

future work listed in Section VII.

A number of appendices are included to provide the

detailed support too extensive to be included in the main

body of the paper. They are referenced in the appropriate

sections. Additionally, to speed the completion and

9
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availability of the KEYMAIN program, the author wrote two

subroutines (CONECT and REDUCE) to be included in that

package. Appendices E through G contain the development of

- these subroutines and the FORTRAN code listings.

10
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II. BACKGROUND

Consider a three dimensional underwater tracking array

composed of four hydrophones arranged to define a local

Cartesian coordinate system (see Figure 1). Such an array

is capable of tracking a target downrange, crossrange and in

depth in its local coordinate system; it is termed a short

baseline array because of the short distance of the X. Y,

and Z hydrophones from the "corner" hydrophone (30 feet)

that is used to gather the three dimensional tracking

information.

The arrays take "fixes" of target position. A fix is

defined by a bearing (azimuth and elevation) and distance

from the array to the target. Tracked targets on the range

are fitted with an acoustical device, called a "pinger",

that emits pulses of sound, or "pings", at a specific

frequency at precisely timed, regular intervals. The

elapsed time from the generation of the ping at the target

to the reception of the ping at the array establishes a

distance from the target to the array. Because of the

distance that separates the individual hydrophones of the

array, the ping arrives at each hydrophone at a slightly

different time. This time difference can be resolved into a

bearing from the array to target. (Actually, these fixes

are "apparent" fixes. They are used to initialize a sound

11
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ray tracing algorithm that leads to the "real" fix.) A

series of such fixes establishes a target track in that

particular array's own local Cartesian coordinate system.

If the precise position -f the array is known, its local

track 1iformation can be translated to one common range

coordinate system.

Position of an individual array in the range Cartesian

coordinate system is described not only in terms of its

downrange, crossrange and depth (X,Y and Z) coordinates

(termed location), but also with respect to X-tilt, Y-tilt

and Z-rotation (commonly called roll, pitch and yaw) angles

from the range coordinate system axes (termed orientation).

Both sets of measures are needed to translate accurately

from local to range coordinates.

Typically, a range is composed of many individual

arrays. Nanoose Range, for example, has 24 arrays, while

Dabob Bay has 7. The arrays are arranged in such a way that

the array coverages overlap one another to provide

continuous tracking on a target vehicle. Such overlapping

areas are called crossover regions (see Figure 2), and

produce two sets of track on the same target for the same

time period.

Ideally, the corresponding points, or fixes described

earlier, from each array in a crossover region should

translate to identical points on the range coordinate

system. In practice, this seldom happens.

13
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Three major sources of this variability in crossover

track data are:

(a) Slippage of the sensor arrays from their assumed
positions in the range coordinate system.

(b) Time synchronization and instrumentation problems.

(c) Inhomogeneities and temporal variability in the
water column.

Although the reasons for slippage of the arrays are

speculative, the fact that slippage occurs is evidenced by

the change in sensor locations after a range resurvey is

performed. The question of discriminating timing errors,

item (b), from slippage errors is on a future agenda.

Investigation done by Main [Ref. 13 provides us with

methodology for treating the random components of these

errors. Item (c) falls into a broader category which may

require extensive investigation. It may also provoke a

reassessment of the assumed uniform horizontal quality of

the range water column. It seems wise to account for

slippage and instrumentation problems first. Our work is

confined to (a).

The present research is in direct support of Professor

Robert R. Read of the Naval Postgraduate School who has been

working on the slippage question. He has produced a FORTRAN

program (KEYMAIN) which takes the crossover data and

estimates array position corrections using a non linear

least squares algorithm. The surfaces that enter into this

least squares optimization function are rather flat and the

15
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values do not change much as the location corrections are

varied. Replicated data is needed to quantify the extent to

which the estimated corrections are within the range of

natural variability. The simulation model in this thesis

provides the tool by which this variability can be

quantified. With the simulation, the needed replicated data

can be quickly and easily generated, and scatterplots of

displacement (change in location) versus rotation (change in

orientation) can be made to investigate the inherent

variability in the correction estimates.

1..6
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III. DATA ANALYSIS

A. GENERATING RESIDUALS FROM REAL TRACK DATA

The real track data used for this study was taken from

Nanoose range in September, 1962 (Figure 3). It was

. supplied as an N x 7 matrix, N representing the number of

data points in the crossover data set and the columns

representing the following:

Column 1 Point count. Every pulse emitted by the
pinger is assigned a sequential number
beginning at the start of the tracking run.
Therefore, this column's value increases by
one each row unless a data point is missing,
which would be indicated by a sequential
omission in this first column.

Columns 2-4 The X,Y, and Z coordinates of the target
for the column one point count as determined
by the first sensor in the crossover pair.

Columns 5-7 The X,Y, and Z coordinates of the target for
the column one point count as determined by
the second sensor in the crossover pair.

There were six such data sets used. These particular

sets were chosen because each formed a straight line in the

range space and so the best straight line path of the target

could be estimated from the data. (In contrast, estimating

the best curved path from curved track data would have been

far more challenging, but with little or no gain in the

examination of residuals.)

The idea was to take the track data, fit the best

straight line possible through the data, then examine the

17
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residuals formed by subtracting the fitted straight line

point sequences from the original data.

The commented FORTRAN program written to generate the

residuals is included as Appendix A, and its mechanics are

discussed below.

Since the data was given in a single matrix and

residuals were desired for each sensor, the data was first

separated into two tracks, each an N x 3 matrix; call them

TRI and TR2. Next, a 3 x 3 covariance matrix for each track

was computed by the formula

N
COV = I (TR(i)-TR) ° (TR(i)-TR)] / N-I

i=1

where

TR(i) = 3 component row vector of the X,Y,Z coordinates of

th
the i data point

TR = 3 component row vector of the average of the N

(X,Y,Z) coordinates for that track data

N = number of data points

The best straight line estimate of the target path is

the straight line such that the sum of the distances of each

data point to the line is a minimum. This implies that the

distance from each point to the line is a minimum - that is,

each point should be projected onto the line orthogonally.

The method employed to accomplish this orthogonal regression

was that of principle components. Principle components

requires that the eigenvector associated with the largest

19
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eigenvalue of the covariance matrix be identified. It was

computationally convenient to make a 3 x 3 matrix of the

migenvectors, with the first column being the migenvector

associated with the largest eigenvalue, the second column,

ethe eigenvector associated with the second largest

eigenvalue and third column, the igenvector associated with

the smallest eigenvalue. This done, the following matrix

multiplication

PROJECTION = (TR - AVE) x EIGENVECTORS

where

TR = N x 3 track data matrix

AVE= N x 3 matrix made of N identical rows of

the X,Y, and Z averages of the track data

EIGENVECTORS = 3 X 3 eigenvector matrix described above

yields the N x 3 matrix PROJECTION, whose entries are the

orthogonal projections of the track data points onto the

axes of a new 3 dimensional Cartesian coordinate system

whose origin is located at TR (the (X,Y,Z) averages for the

data set) and whose axes are rotated such that the new X

axis is the best straight line that describes target path.

For example, the first row of PROJECTION is a three

component row vector; call the components (pl,p2,p3). Then

the point (pl,0,0) is the projection of the first track data

point onto the new X axis (known to be the best straight

line that describes the target path), the point (O,p2,O) is

the projection of the first track data point onto the new Y

20



axis, and the point (O,O,p3) is the projection of the first

track data point onto the now Z axis. Since we are only

interested in the projections onto the new X axis, we can

replace the second and third columns of PROJECTION with

zeros and have the coordinates of the best straight line

path of the target. These coordinates are in the PROJECTION

coordinate system, and must be translated back into the

range coordinate system. Using the matrix PROJECTION (with

last two columns = 0) and performing the following

multiplication

OLD - EIGENVECTORS x PROJECTION'

yields the 3 x N matrix of the track data points in the

range coordinate system. Note that OLD must be transposed

to get the N x 3 format desired. Since the mean had been

subtracted off before computing the PROJECTION matrix, to

get the data points back to the proper position requires

that the means be added back in. The matrix addition

OLD' + AVE

yields the N x 3 matrix of the orthogonal projections of the

data onto the straight line path of the target in the

original range coordinate system.

Actually, after having computed the PROJECTION matrix,

there is yet another step to take before translating back

into the range coordinate system. Based on an assumption of

constant speed for the target, the track data points should

be equally spaced since the pulses are emitted at regular,

21



precisely timed intmrvals. This could be accomplished by

using an interval equal to the total distance divided by the

number of data points, but if data points are missing in the

track data set (and each set of track data was missing

several points), then this method introduces an error. The

method chosen should show that, if a single data point is

missing, the gap between the consecutive points on the data

track should be twice as long as if none were missing. The

first column ( the point counts) of the N x 7 track data

matrix contains the information on missing points.

Performing a simple least squares regression of the point

counts onto the first column of the PROJECTION

matrixtranslates this information into the best straight

line point sequence for target motion. Now when the

projections onto the first principle component are

translated back onto the range coordinate system, the

*result is truly the best set of track points attainable

using all the information contained in the track data set.

To obtain the residuals, the straight line estimated

track points are subtracted, point for point, from the

original track data. It was important to discover the

distribution of the residuals for each track segment because

to simulate the track segments later, residuals were

simulated and then added to the straight line. Knowing the

character of the residuals allowed the generation of very

realistic track data for the simulation model.

- * -~;t*. .2*2* -
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B. ANALYZING TRACK DATA RESIDUALS

Each of the six track segments produced two sets of

residuals - one set for each of the two sensors of the

crossover pair. Each set was further divided into X, Y, and

Z components. There were, therefore, 36 sets of residuals to

be examined for distributional characteristics. Graphical

analysis was performed on each set of residuals (histograms,

cumulative density plots and 00 plots) and, when, from that

analysis, a distribution for the residuals could be

determined, formal statistical tests were performed to

verify that the best distribution was chosen. The analysis

showed the residuals to be normally distributed. The best

and worst case graphical and analytical results are included

in Appendix B. Note that there were some very good fits to

a normal density (pp. 66-71) with statistical significances

for the Chi Squared and Kolmogorov- Smirnov goodness of fit

* tests well above a very conservative .35 in all but one

case. Even in the data that most poorly resembled a normal

density (pp. 72-77), the Kolmogorov - Smirnov goodness of

fit significance level never fell below .25. From this

analysis it was concluded that a normal density for the

residuals was accurate and appropriate for the simtilahion

model.

C. TIME SERIES ANALYSIS

From a simulation point of view, it is very convenient

to assume independence of the residuals between successive

23



points in the original track. If the assumption is not

made, then one must resort either to using a point count

interval of some integer value greater than one for making

- the simulated track from the original, or build an

autoregressive model.

Concern for this correlation of the data over time led

* to a time series analysis o- the residuals. This was done

* in two ways for each track from a single sensor. Recall

that for each data point, residuals were generated in the X,

* Y, and Z directions of the range coordinate system. Each of

these components was subjected to a time series analysis to

* determine whether there was a dependence in the errors in

any single direction over time. Then, the distance of the

data point from the straight line target path, given by

SORT[ (RES 2) + (RES 2) + (RES 2) ]

was examined to determine if the magnitude of the error of

one point was correlated with the magnitude of the error of

the next point. The time series analysis examines the

dependence from point to point, on every other point, on

every third point, and so on, so that the interval at which

one can assume independence (indicated by an autocovariance

value of zero) can be determined. Appendix C contains the

autocorrelation graphs for the 6 data sets; first the error

magnitudes are examined for both sensors of a data set,

followed by the individual error analysis in the X, Y, and Z

directions.

24
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There was no clear cut interval for which independence

seemed to emerge in the data sets. There is instead a

random pattern of insignificant dependence from the

beginning of the autocorrelation analysis, leading to the

conclusion that point to point independence was appropriate

for the simulation model. Attention is directed to the

noise in the autocorrelation graphs with no distinct

patterns emerging, and correlation magnitudes smaller than

0.2 in most cases. It was decided, therefore, that any

important time correlation was not so large as to cause

excessive or even noticeable error in the simulated tracks.

D. STUDY OF RESIDUALS

The study of the residuals yielded important interesting

information, summarized in Table 1. The first column of

Table 1 is the standard deviation of the residuals from the

left sensor in the downrange (X), crossrange (Y) and depth

(Z) directions, three values for each data set. Column 8

gives the corresponding information for the right sensor of

the crossover data pair. Columns 2, 3 and 4 for each data

set are the columns of a 3 x 3 correlation matrix for the

residuals of the left sensor, columns b, 6 and 7,

corresponding information for the right sensor.

First, note the difference between the left and right

sensor standard deviations of residuals in all three

directions. Although there are some very good comparisons

(data set D2A1, crossrange, and data set D5A, downranqe)

25
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TABLE I
STANDARD DEVIATIONS OF RESIDUALS

AND
CORRELATION COEFFICIENTS OF RESIDUALS

SD CORRELATION CORRELATION SD
LEFT LEFT RIGHT RIGHT

DATA SET D2A1 , N = 67

0.842 1.000 0.916 -0.899 1.000 -0.863 0.787 0.721
2.141 0.916 1.000 -0.728 -0.863 1.000 -0.455 2.154
2.394 -0.899 -0.728 1.000 0.787 -0.455 1.000 2. C'6

DATA SET D2A2 , N = 70

1.484 1.000 0.859 -0.787 1.000 -0.360 0.040 1. 163
2.396 0.859 1.000 -0.759 -0.360 1.000 -0.547 2.147
2.694 -0.787 -0.759 1.000 0.040 -0.547 1.000 1.976

DATA SET D2B , N = 5.3

0.693 1.000 0.788 -0.88 1.000 -0.949 0.902 0.97
2.000 0.788 1.000 -0.434 -0.949 1.000 -0. 728 5

.35: -0888 -0.434 1.000 0.902 -0.728 1 000 042

DATA SET D4 , N = 93

0.497 1.000 0.741 -0.904 1.000 -0.681 0.380 0" suz
- .1.955 0.741 1.000 -0.687 -0.681 1.000 -0.146 2.45b 7

1.537 -0.904 -0.687 1.000 0.360 -0.146 1.000 1.-43

DATA SET D5) N = 8

1.731 1.000 -0.930 -0.429 1.000 -0.953 0. 168 I.7,
5.751 -0.90 1.0-00 0. 152 -0. 953 .000 -0. 148 . 65
13:8 -0.429 0. 152 1.000 0. 168 -0. 148 1.0 1.373 -

DATA SET D5B , N =87

0. 886 1. 000 -C. 408 -0. 450 1. 000 0. 445 0. 95 0. 71 -
2.931 -0.40 1. 000 -0.454 0. 445 1.000 -0. 2,9 1.617
3.397 -0. 450 -0.454 1. 000 0.395 -0.279 1. 000 4.254

26
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there are also some wide disparities (data set D2B,

crossrange and data set D5B, crossrange). Using the

variance ratio test described in Larson [Ref. 2: pp. 4491, a

statistical test was performed to determine whether the

variances (the recorded standard deviations, squared) of the

left and right sensor arrays for downrange, crossrange and

depth were the same for a given data set. The results are

given in Table 2. Using 0.05 as the basis for rejection of

the null hypothesis (H : the two variances are the same), 8

of the 18, or 44%, of the individual tests fail. With a

confidence level of .95, one would expect roughly 1 failure

in the 18 tests. Eight failures is strong evidence that the

standard deviation figures do not match very well.

Recalling the test data from Figure 3 (p. 18), it is

seen that there are three sensor arrays that contributed the

data: arrays 4, 5 and 6. In data sets D2A1, D2A2 and D2B,

array 4 is the left array and array 5 is the right sensor

array. For data sets D4, D5A and D5B, sensor array 5 is the

left array and array 6 is the right array. One might expect

that the standard deviations in any single direction would

be the same for a given sensor. This turned out not to be

the case. Using Bartlett's test for the equality of several

variances [Ref. 3: pp. 225-2273, the hypothesis that the

variances for a given sensor in a given direction are equal

was tested. The results are given in Table 3. The first

two sections of the table compare the 3 standard deviation
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TABLE 2 TEST OF THE HYPOTHESIS THAT THE
STANDARD DEVIATIONS WITHIN A DATA SET

ARE EQUAL

VARIANCE DEGREES LEVEL OF
RATIO OF FREEDOM SIGNIFICANCE

DATA SET D2AI

DOWNRANGE 1.363 66 .211

CROSSRANGE .9ee 66 .935

DEPTH 1.363 66 .229

DATA SET D2A2

DOWNRANGE 1.627 69 .045

CROBSRANGE 1.244 69 .364

DEPTH 1.85e 69 .011

DATA SET D2B

DOWNRANGE .547 52 .031

CROSSRANGE .357 52 .0003

DEPTH .598 52 .067

DATA SET D4

DOWNRANGE .982 92 .884

CROSSRANGE .62e 92 .027

DEPTH .692 92 .079

DATA SET D5A

DOWNRANGE .995 61 .939

CROSSRANGE .749 831 .195

DEPTH .508 81 .003
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TABLE 2 (continued)

DATA SET D59

DOWNRANGE 1.527 86 .051

CROSSRANGE 3.300 86 0.0

DEPTH .638 96 .038
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Table 3 TEST OF THE HYPOTHESIS THAT THE
"- STANDARD DEVIATIONS OF RESIDUALS OF

A PARTICULAR SENSOR ARE EQUAL

Chi Squared Random Variables

DEGREES OF FREEDOM .99 QUANTILE .999 QUANTILE

2 9.21 13.82

5 15.09 20.52

DOWN CROSS DEGREES
RANGE RANGE DEPTH OF FREEDOM

SENSOR 4 (LEFT) 39.57 2.02 1.41 2

SENSOR 5 (RIGHT) 14.75 16.25 13.96 2

SENSOR 5 (LEFT) 131.14 101.33 91.40 2

SENSOR 6 (RIGHT) 148.72 175.18 84.31 2

SENSOR 5 (LEFT AND 153.04 150.87 105.51 5
RIGHT)

LEFT SENSORS 171.45 162.29 94.48 5

RIGHT SENSORS 168.37 236.97 107.15 5
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values for each sensor in a single direction. The test

statistic is distributed as a Chi Squared random variable

with 2 degrees of freedom. The .99 and .999 quantiles for

such a random variable are 9.21 and 13.82. In only two

cases of the 12 trials would the 3 standard deviations be

considered statistically the same.

The third section of Table 3 is included because sensor

array 5 was used as both a right and left array. Therefore,

there were actually six values for downrange, crossrange and

depth for that particular array. Using the same test as

before, the question of whether the six values were

statistically the same was investigated. The tabulated

statistic for the 3 cases is distributed as a Chi Squared

random variable with 5 degrees of freedom. The .99 and .999

quantiles for such a ramdom variable are 15.09 and 20.52.

In every case, the p-value of the test is essentially equal

to 0.0. The results are highly significant.

Finally, the bottom of the table investigates whether

downrange, crossrange and depth residual standard deviations

are the same for left and right sensors in general.

Employing the same test for the 6 values produced the

tabulated statistics. Since the test statistic is again Chi

Squared with 5 degrees of freedom, the level of significance

in every case is essentially 0.0.

A third question of interest from Table 1 is whether

the correlation coefficients are the same for the left and

31
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* -right sensors in a data set. This was investigated in the

- following manner.

First, the normalizing, inverse hyperbolic tangent

transformation [Ref. 3: p. 3653 was applied to each of the

off diagonal correlation coefficeients in the correlation

matrices. (Note that the matrices are symmetric, so there

are only three values of concern for each matrix.) This

transformation makes each of the values normal with mean

1 1 + rho
- ln
2 1 - rho

and variance

b.• N - 3

where N is the number of data points contributing to the

correlation. Under the assumption that the two independent

sample correlation coefficients come from the same

population, their difference is distributed normally with

* mean 0 and variance

2

N - 3

We can therefore go to the standard normal tables to obtain

the significance of the statistic

Z 1 - Z2

SORT [2/(N-3)3

which tests the hypothesis that the two correlation

coefficients are equal. These values are tabulated in Table

32
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TABLE 4 TEST OF THE HYPOTHESIS THAT THE
CORRELATION COEFFICIENTS WITHIN A DATA SET

ARE EQUAL

DATA CORRELATION STANDARDIZED LEVEL OF
SET COEFFICIENT Z1 - Z2 NORMAL SIGNIFICANCE

D2A1 XY 2.867 16.227 0.0

D21A XZ 2.534 -14.333 0.0

D2A1 YZ -.434 -2.453 0.014

D2A2 X,Y 1.668 9.654 0.0

D2A2 XZ 1.103 -6.384 0.0

D2A2 YZ -.381 -2.203 0.028

D2B XY 2.88 14.438 0.0

D2B X,Z -2.896 -14.481 0.0

D2B Y,Z .459 2.293 0.022

D4 X,Y 1.783 11.959 0.0

D4 XZ -1.894 -12.706 0.0

D4 Y,Z -. 695 -4.659 0.0

D5A X,Y .206 1.293 0.196

D5A XZ -. 628 -3.948 0.0

D5A Y,Z .302 1.900 0.057

D5B X,Y -. 911 -5.904 0.0

D5B X,Z -. 903 -5.850 0.0

D5B Y,Z -. 203 -1.443 0.149
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4. To got a significance of greater than .05 in this test

requires a value between +/- 1.96, so only 3 of the 18 pairs

of correlation coefficients are statistically equal, giving

very strong evidence that the correlation coefficients of

the residuals as recorded by the two sensors in a crossover

pair are, in general, not equal.

The practical significance of the preceding tests is

that there appears to be much local variation in the range

and that one single model for simulating random replications

of underwater track is not apparent. Therefore, each case

must be simulated and studied separately, and the study of

-r - the error estimates distributions done on a case by case

. basis.

--
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IV. SIMULATION MODEL

The simulation model itself is a logical extension of

the residual generation program. In fact, the method used

to simulate a data track was to simulate residuals and add

them to the fitted straight line obtained for that track,

rather than to start from scratch and simulate a totally new

track at each iteration. This method was very quick and

yielded very good simulated track segments. Figure 4 on the

following page is graphical comparison of a typical original

track segment overlaid by a track segment simulated by the

method stated above. The comparison demonstrates the

realistic quality of the simulated track.

The regression method used to compute residuals of a

track segment also produced the best straight line in three

dimensional space to approximate the target path through the

water. Given the straight line, the residuals themselves,

and the assumption of normality of the residuals, it is

possible to simulate a set of residuals from normal (0,1)

deviates and add them to the straight line to obtain a

simulated track.

In simulating residuals, the object is to compute an

N x 3 matrix, using normal (0,1) deviates, whose vectors of

X, Y, and Z components are normally distributed with mean 0

and whose covariance matrix is equal to the covariance
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matrix of residuals. That is

R = T x X'

where

R = 3 x N matrix of simulated residuals

X = N x 3 matrix of N(O,1) deviates

T = 3 x 3 transformation matrix such that

T x T ° = covariance matrix of residuals.

Note that R must be transposed to get the desired N x 3

residual format.

It is easy to show that any 3 x 3 matrix T will not

alter the mean of 0.

E[R] = E[T x X'3

= T x E[X']

Since the expectation of X -- consisting of normal (0,I)

deviates -- is identically 0,

E[R] = T x (0) = 0

giving the desired result.

The condition that T x T' is equal to the covariance

matrix of the residuals is necessary because

COV[R] = E[R x R'/N (the mean is 0)

= E[T x X" x X x T'J/N

= T x E[X' x X]/N x T'

(since T is a linear operator)

=T x I x TV

(because the covariance matrix of N(0,1) random variables is

the identity matrix)
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T x T'

The problem now becomes one of finding a 3 x 3 matrix such

that

COVRJ = T x T'

We have the covariance matrix of the residuals. Let T be an

upper triangular matrix. Then
T 0 0CO COYI COYI

T i1T1zT1 1 o 11 C 12 C 13

0 Tf22 T 2 x [Ti 12T=L0 o 21 C 22 C 23
I T TI3 T T COY COV COV

31 L3 23 3 -31 32 33J

Noting that the covariance matrix is symmetric and

performing the matrix multiplication yields

T33= SORT (COV 33

32

T -
23- T3

T =SORT (COV -T 2)

w22 22 23

T 1 COY13
T13=

T33

COY - T T
T = 21 23 13

12 

T22

Tll =SQRT(COV11 - T -T 1

Since the matrix T is easily computed and X can be generated

from a random number generating package, the residuals, R,

are quickly and economically computed for as many simulated

tracks as desired.
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Adding the residuals thus formed to the best straight

line target path of the original data yields a simulated

track.

The commented FORTRAN program written to perform the

simulation is included as Appendix A. It is basically a

driver program that generates a user specified number of

" simulated tracks and interfaces with KEYMAIN, which

* estimates displacement and angular rotation values. Because

some of the user friendly attributes of KEYMAIN interfere

with the speedy generation of the simulation's required

output parameters, the package has been altered somewhat to

increase speed. The output of the driver program is two

data files. One data file, ROTATE.DAT, is an N x 4 matrix

*- that gives, in the first column, the maximum angle of

rotation of the sensor, and, in the last 3 columns, provides

the ordered Euler angle components that form the single

maximum rotation angle. The second file, DISPLACE.DAT, is

also an N x 4 matrix. The first column is the magnitude of

displacement of the array, while the last 3 columns give the

X, Y, and Z axis components of displacement.
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V. INTERFACE WITH EXISTING PROGRAMS

The software developed to compute residuals and generate

simulated track segments are the original work of the

author, aided by such canned routines as eigensystem

analysis, random number generators and vector arithmetic.

These canned subroutines came from the IMSL Library of

Mathematic and Statistical functions developed for the IBM

PC computers [Ref.4], and are compiled in machine language

libraries not reproducible here. The author's FORTRAN code

is listed as Appendix A.

In order to produce the estimates of sensor displacement

and rotation, however, it was necessary to interface with a

large stand alone FORTRAN package, KEYMAIN. This program

takes as input crossover region data sets (real or

simulated) and produces the estimates of displacement and

rotation of the second sensor of the crossover pair, based

on the assumed accurate position of the first. The

orientation correction output by KEYMAIN is actually a three

valued vector of ordered angular rotations in the XY, XZ and

YZ planes. Similarly, the location correction is a three

valued vector of displacements in the X, Y and Z directions.

To reduce complexity, the ordered Euler angles were reduced

to a single maximum angle of rotation about an appropriately

tilted axis, and the three components of displacement were
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yd
reduced to a single quantity, magnitude of displacement.

LThus the six dimensional quality of position corrections was
reduced to two.

KEYMAIN was designed as a stand alone product and as

such is very user friendly. It was also designed to take

not just one, but several, crossover data sets and produce

displacement and rotation estimates for several sensors at

once. Because its use in the simulation was to process a

single simulated crossover data set, and because it was

being called as a subroutine rather than used as a stand

alone package, significant changes were required in

the program to obtain fast simulated results uninterrupted

by the now unnecessary user friendliness. Not only did this

require the modification of the executive driver routine,

but also modification of several of the called subroutines.

41



VI. RESULTS

It is imperative that the simulated track segments

"look" and "act" like the original track segment they are

simulating. That the simulated track segments act like the

original is guaranteed by the equationsm the residuals will

have mean zero by definition and their covariance matrices

were computed to be the same as the original's. For visual

verification, Appendix D is included. Appendix D contains

plots of each original track segment overlaid by one of the

tracks simulated from it. A good fit is apparent in all

cases.

The simulation model can produce the data needed to

produce a scatterplot of magnitude of displacement (in feet)

versus maximum angle of rotation (in radians) like the

schematic shown in Figure 5. This represents an imaginary

* situation where a target vehicle was driven through a

single crossover region on a range 700 times over the exact

same track, and the results were fed into the program to

produce the displacement and rotation values. It acts as a

data base, or sampling distribution, for an array whose

position has not changed, and the graph depicts the natural

variability of the data. The contours represent some

theoretical confidence levels for that particular sensor.

For example, take the outermost contour, labeled .90. In a
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future tracking exercise, crossover data can be fed into the

program that produces displacement and rotation estimates.

That will produce a point on the graph. If that point lies

outside the contour, we have good evidence that the sensor

has moved. Statistically speaking, one would have a 10

percent chance of rejecting a true null hypothesis, given a

null hypothesis of no sensor movement. Conversely, if the

point plotted closer to the middle of the graph, there would

be insufficient evidence to support the hypothesis of sensor

movement, and the apparent movement would be attributed to

the inherent variability in the data.

It is unreasonable to expect that a target vehicle could

be driven along the same track 700 times, nor would the

range operators be likely to attempt it. The simulation

program, however, needs only one straight line segment of

track through a crossover region, and can then generate as

many track data sets as needed to produce the graph.

Figures 6 through 11 are plots produced from the

simulation model using the data sets from Figure 3 (p. 16).

Figure 9 is a "well-behaved" plot that could conceivably,

with many more runs, yield the type of graph displayed in

Figure 5. In fact, the points appear so evenly distributed

that one could conceivably assume independence between the

rotation and displacement values.

Although computationally attractive, independence is

thought to be a poor assumption, because if a sensor has

S, 44
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displaced a great distance, it has also had ample

opportunity to rotate. This observation is speculative, but

seems to be borne out in the remaining figures where a

strong positive correlation appears to exist between the

displacement and rotation values. The fishhook appearance

on these graphs is a result of making the correction

estimates positive regardless of the direction of

displacement or rotation. The graphs taken as a whole serve

to illustrate the variable nature of the track data.

These three graphs, drawn from the simulation, vividly

illustrate the need for further study. Two points

concerning the data on which these graphs were based are

perhaps of some importance and may begin to explain the

strange nature of the graphs produced. First, the data is

fairly old, taken in September, 1982. The range operators

from NUWES state that their capabilities have improved in

the interim 3 years and that newer data could prove

significantly more accurate. Second, the data was taken on

a single day, from a single range, using only 3 of the 24

sensors on the range.

The great variety of graphs produced points to the

necessity to do much more research and to the utility of a

simulation model to accomplish it. In addition to the

aforementioned use of newer data, the following

considerations warrant study to ascertain their possible

effects:
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(a) Day to day variations on the range -- It is
not clear at this time whether the character of
the water column in which the target operates
is invariant over time. Differences in salinity
and/or temperature could conceivably evolve over
time, affecting the accuracy of the track data.

(b) Seasonal variations on the range -- While it
is not clear whether changes occur on the range on
a daily basis, it certainly seems reasonable to
expect a variation from season to season. Our
data, taken from a single range on a single day,
was insufficient to explore this.

(c) Location on the range-- Current practice on a
tracking day is to take one sample of the water
column on the range, checking for salinity,
temperature, and other factors that affect the
sound velocity profile, and assume that the
results hold true for the duration of the exercise
for the entirety of the range. The possibility of a
daily change was discussed earlier. Here we mention
the possibility of different water characteristics
from one end of the range to the other.

(d) Geometry of tracking runs -- It is possible
that varying the geometry of the tracking run
could result in changes to the quality of the
data recorded. It can be seen from figure 3 (on
page 18) that all of the data used for the
simulations was from tracks that run predominantly
downrange with relatively little crossrange change
and virtually no depth change. (Although depth
cannot be seen from figure 3, it was examined for all
the tracks.)

(e) Depth of target -- Depth appears to be the least
reliable of the three dimensions recorded during
tracking runs. Our data is from targets that
operated in a narrow depth band. Deeper or
shallower targets could significantly affect the
data.

(f) Inhomogeneities in the water -- It is quite
conceivable that undetected inhomogeneities in the
water could significantly affect the quality of
the data. It would appear that currents and
turbulence could affect the passage of sound
through the water column, but quantifying these
disturbances could be a major practical problem.
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Precisely characterizing the variability of the

correction estimates is elusive and the preceding

considerations invite much future research before that goal

is reached. The existence of this simulation model

brightens the outlook for ultimate success.
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VII. AREAS FOR FUTURE WORK

Problems encountered in the development of the

simulation model and intuition gained as a result of working

on it gave birth to several areas for potential future

study. Some of these are listed below.

A. RESIDUALS FOR bURVED CROSSOVER DATA TRACKS

It was convenient in this simulation model to use

straight line segments of track to get residuals. This is

because the method of principle components works only for

straight lines in N-space, rather than for curves. If a

method could be developed to regress the data for any track

onto its best path, regardless of curvature, one major

obstacle in the use of the simulation would be removed.

Whereas now we are limited in the type of data we can use,

such a method would enable the use of all crossover data.

B. WEIGHTED DATA BASED ON DISTANCE TO SENSOR ARRAY

It was assumed in the model that recorded track data

was uniformly accurate and reliable, regardless of the

distance from target to sensor. That is, no distinction was

made between the accuracy of the data when a target vehicle

was "close" to a sensor and when the target was far away.

Some sort of weighting scheme may prove beneficial and help

smooth out the current data discrepancies.
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C. TRISENSOR CROSSOVER DATA

Although smaller in size, there exist areas on the

range where a target may be tracked simultaneously by three

sensors at once. These trisensor crossover regions could

provide insight into the accuracy of the position of a

sensor and may yield more accurate estimates of displacement

and rotation.

D. TRACK DATA SELECTION PROCEDURES

It is not now known whether a greater number of data

points in a track segment yields better results in the

simulation and intuition is limited on this point. Research

* in this area could provide valuable guidelines for selection

of data to use in the simulation in the future.

E. DECISION RULES TO DETERMINE SENSOR MOVEMENT

After accurate characterization of the variability of

track data and correction estimates is made, the next

" .. logical and extremely useful step would be the construction

of statistically sound decision rules to determine the

following:

(a) The discrepancy noted between the tracks in a
crossover data set can be explained by the inherent
variability of the data.

(b) The discrepancy noted between the tracks in a
crossover data set can be quantified by the sensor
slippage model and can be computationally corrected.

(c) The discrepancy noted between the tracks in a
. crossover data set cannot be explained by the model

of sensor movement and some other explanation must be

sought.
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Clearly, the last option is the least desirable, but if

that situation is present, it needs to be noted.

F. COMPUTATIONAL RANGE RESURVEY

If the method of providing correction estimates can be

proven to be reliable and accurate, it provides a potential

method of range resurvey that has several advantages over

.- the current method. First, the range would not need to be

shut down to resurvey. In fact, range use would be

* -mandatory to keep up to date sensor array positions.

* ,Second, it would be less expensive than the current method,

replacing the equipment and manpower intensive current

*process with relatively inexpensive computer assets. Third,

it would take less time. Resurvey of a single sensor array

on the range can take up to a day; generating corrections

,~from track data takes seconds. Fourth, since the current

method uses a craft on the surface equipped with a pinger,

all the pings must travel through the first 150-200 feet of

the water column, where the sound velocity profile is quite

variable and most difficult to determine, to get to the

sensor array. In contrast, the underwater target vehicles

tracked by the arrays are typically in 400-600 feet of water

where the sound velocity profile is much smoother and easier

* to predict. Thus, one source of variability in determining

*' sensor position is reduced.

It is not envisioned that this computer method could

ever replace the current survey process, but rather augment

56

* # . .*.-** *''*.* *'**% ... '*' -** . *.



it. Some way to determine the position of one sensor is

necessary before KEYMAIN can even begin to function.

However, if this computer process could augment current

resurvey efforts, or reduce the frequency with which

resurveys must be made, significant savings in time and

money could result.

-I
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APPENDIX A

FORTRAN LISTING FOR PROGRAM SIMDAT

PROGRAM SIMDAT2
C
C...This program simulates 3-D track data based on a
C...specific real track specified by the user.
C...User inputs are:
C.. 1. track segment data file to be simulated
C ... 2. number of the left and right sensor in the
C... crossover pair
C... 3. number of simulated tracks desired
C... 4. request for sample simulated track (YES or NO)
C... 5. random number generator seed
C... The program output is:
C... 1. file of residuals from the original track
C... (RESIDUAL.DAT)
C... 2. file of a simulated crossover track, if
C... requested (SIMTRACK.DAT)
C... 3. file of displacement values (in feet) for the
C... right sensor of each simulated track in 4
C... columns
C... Col 1 magnitude of displacement
C... Col 2-4 X,Y,Z components of displacement
C... 4. file of rotation values (in radians) for the
C... right sensor of each simulated track in 4
C... columns
C... Col 1 maximum angle of rotation
C... Col 2-4 ordered Euler angles of rotation
C
C... VARIABLE DECLARATION
C

INTEGER*4 N, I, J, K, IER, BIG1(3), BI62(3), SIMS,
+ POINT(130), TRACKS, IDL, IDR, TRKOUT

C
CHARACTER DSNAME*13

C
REAL*4 NORM(260)

C
REAL*8 TRACK(130,6), TR14130,3), TR2(130,3), MBARI (:3),

+ MBAR2(3), MBARM1(130,3), MBARM2(130,3), COV1(3,,-),
+ COV2(3,3), DIFI, P1(3,3), MUT1(130,3), SIM1(3,13S(),
+ DDI(3), DD2(3), PA(3,3), PB(3,3), WORK(130), D1, D2,
+ DIF2, SUMI, SUM2, Al, A2, Z1(3,130), Z2(3,130),
+ P2(3,3), ZT1(130,3), ZT2(130,3), TBAR, ZIBAR, Z2BAR,
+ fRKSUM(130), TKSUM2, CT1(3,130), CT2(3,13u), SEED,
+ MUr2(130,3), RESID1(130,3), RESID2(130,3), SU2(,3),

5B
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* -+ CrflR(31 ) C22R3) 80139). SIMTRK(20096)
* -~+ SIM2(3,130), ROTATE(1000,4), DISP(1000,4), DAIA(2,4)

C
C... Begin the user input section
C

WRITE(*,*) 'Enter FNAME.FT of crossover data set

WRITE(*.*) " on disk :
READ (*,'(A)') DSNAME
WRITE(*,*)
WRITE(*,*) 'What is the NUMBER of the left sensor in
WRITE(*.*) ' the crossover pair ?
READ(*,*) IDL
WRITE(*,*)
WRITE(*,*) 'What is the NUMBER of the right sensor ?

READ(*,*) IDR
WRITE(*,*) I I

WRITE(*,*) 'How many simulated tracks do you desire ?

WRITE(*.*) '(NOTE : max 1000)
READ(*,*) TRACKS
WRITE(*
WRITE(*,*) 'Do you want a sample simulated track ?

WRITE(*,*) 'Enter 1 for YES, 0 (zero) for NO
READ(*,*) TRKOUT
WRITE(*,*)
WRITE(*,*) 'Seed for the random number generator'
WRITE(*,*) 'NOTE : Seed must include a decimal
READ(*,*) SEED
WRITE(*,

C
C...Read data from file
C

OPEN (1,FILE=DSNAME,STATUS='OLD')
N =0

10 N= N + 1
READ(1,*,END=30, ERR=30) FOINT(N),(TRACK(N,I),I=1,6)

C
C...Separate into "left" and "right" sensor tracks
C

DO 20 I = 1,3
TR1(N,I) = TRACK(N,I)
TR2(N,I) = TRACK(N,I+3)

20 CONTINUE
GOTO 10

30 CLOSE (UNIT = 1)
N = N- 1

C
C...Compute the covariance matrix for each track.
C...-First step, get column averages (with first column
C... average, TBAR, computed for later use)
C

TBAR = 0.
DO 50 I = 1,3
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MBARI(I) - 0.
MBAR2CI) = 0.
DO 40 J 3 9lN

MBARl(I) - MBARl(I) + TRl(JI)
MBAR2CI) - MBAR2(I) + TR2(J,I)
IF (I .EQ. 1) TBAR =TBAR + DBLE(POINI(J))

40 CONTINUE
MBAR1(I) = MBAR I / DBLE(
MBAR2(I) = MBAR2(I) / DBLE(

50 CONTINUE
TBAR = TBAR / DBLE(N)

C
C...Do the matrix multiplication : A(t)xA , subtracting off
C...the mean from each column entry to form the covarianbce
C...matrix. Also make the matrix of (points - means) for
C...later use.
C

DO 80 I 1,3
DO 70 J 1,3
COVI(IJ) = 0.
COV2(I,J) = 0.
DO 60 K = 1,N
COVI(I,J) = COVI(I,J)+(TR1(K,I)-MBAR1(I))

• *(TR1 (KJ)-MBAR1 (J))
COV2(I,J) = COV2(IJ)+(TR2(K,I)-MBAR2(I))

• *(TR2(K,J)-MBAR2(J))
60 CONTINUE

COV1(I,J) = COV1(I,J) / DBLE(N-1)
COV2(I,J) = COV2(I,J) / DBLE(N-1)

70 CONTINUE
60 CONTINUE

DO 100 I = 1,N
DO 90 J = 1,3

MBARMI(I,J) = TRI(I,J) - MBARI(J)
MBARM2(I,J) = TR2(I,J) - MBAR2(J)

90 CONTINUE
100 CONTINUE

C
C...Form the matrix P of ordered principle components for
C...each track. The columns of P are the eigenvectors
C...associated with the eigen-values of the covariance
C...matrix for each track arranged in order of descending
C...eigenvalues. (ie. the eigenvector associated with
C...the largest eigenvalue is the first column)
C
C...Call routine to compute eigenvalues/vectors for each
C... track
C

CALL EIGRS(COV1,3,11,DD1,PA,3,WORK,IER)
CALL EIGRS(COV2,3,11,DD2,PB,3,WORK,IER)

C
C...Get eigenvectors in eigenvalue order, largest to
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C ... smallest, by column
C
C ... DD1/2 = eigenvalue vector
C...PA/PB = eigenvector matrices
C

BIG1(1) - 1
B12(1) - 1
BI1(3) - 3
B162(3) - 3
IF (DD1(BI81(1)) .LT. DD1(2)) B181(1) = 2
IF (DD2(BI62(1)) .LT. DD2(2)) B182(1) = 2
IF (DDI(BIGI(1)) .LT. DD1(3)) B161(1) = 3
IF (DD2(BI2(1)) .LT. DD2(3)) BI82(1) - 3
IF (DD1(BI11(3)) vST. DD1(1)) B161(3) - 1
IF (DD2(BI62(3)) .6T. DD2(1)) BIG2(3) - 1
IF (DD1(BI6I(3)) ST. DDI(2)) BI61(3) - 2
IF (DD2(BI2(3)) .ST. DD2(2)) B12(3) - 2
IF ((BI1(1) + BI61(3)) .EQ. 3) THEN

BI1(2) - 3
ELSE

IF ((BI1(1) + BI61(3)) .EQ. 4) THEN
BIG1(2) - 2

ELSE
B161(2) = I

END IF
END IF
IF ((B182(1) + BI82(3)) .EO. 3) THEN

BIG2(2) = 3
ELSE

IF ((BI62(1) + BIG2(3)) .EQ. 4) THEN
BIG2(2) = 2

ELSE
BIG2(2) - 1

END IF
END IF
DO 130 I - 1,3

DO 120 3 - 1,3
P1(I,3) = PA(I,BIGI(3))
P2(I,3) = PB(I,BI82(J))

120 CONTINUE
130 CONTINUE

C
C...Compute the matrix ZT for each track
C...ZT represents the projection of the track data onto
C...the principle components
C...ZT = (TR - MBAR) x P = MBARM x P
C.. where TR - MBAR = track data minus the column average
C...for each row
C
C...Call routine to multiply matrices AxB
C

CALL VMULFF(MBARM1,P1,N,3,39130,3,ZT1,130,IER)
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CALL VMULFF(MBARM2,P2,N,3,3,130,3ZT29130IER)
C
C...Since there are some points missing from the data set,
C...perform a simple least squares linear regression onto
C...the first principle component
C

TKSUM2 - 0.0
ZIBAR - 0.0
Z2BAR = 0.0
DO 140 I - IN

ZIBAR = ZIBAR + ZTI(,91)
Z2AR - Z2BAR + ZT2(I,1)
TRKSUMCI) = DBLE(POINT(I)) - TBAR
TKSUM2 = TKSUM2 + TRKSUM(I)**2

140 CONTINUE
ZiBAR - ZIBAR / DBLE(N)
Z2DAR = Z2BAR / DBLE(N)
SUMI = 0.0
SUM2 - 0.0
DO 150 I = 1,N

DIF1 - (ZT1(I,1) - ZIBAR) * TRKSUM(I)
DIF2 - (ZT2(I,1) - Z2AR) * TRKSUM(I)
SUMi - SUM1 + DIF1
SUM2 - SUM2 + DIF2

150 CONTINUE
D1 = SUMI / TKSUM2
D2 = SUM2 / TKSUM2
Al = ZIBAR - Dl * TBAR
A2 = Z2AR - D2 * TBAR
DO 160 I = 1,N

ZT1(I,1) - Al + D1 * DBLE(POINT(I))
ZT2(I,1) = A2 + D2 * DBLE(POINT(I))

160 CONTINUE
C
C...Get CT matrix which represents the orthogonal projection
C...of the data onto the straight line of the first
C...principle component
C

DO 170 I = 1,N
Z1(1,I) =ZT (I,1)
Z2(1,I) = ZT2(I,1)

170 CONTINUE
DO 180 I = 1,N

Z1(2,I) - 0.0
Z1(3,I) = 0.0
Z2(2,I) = 0.0
Z2(3,I) = 0.0

180 CONTINUE
C
C...Call routine to multiply matrices AxB
C

CALL VMULFF(P1,Z1,3,3,N,3,3,CT1,3,IER)
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CALL VMULFF(P2,Z2,3,3,N,3,3,CT2,3,IER)
C
C ... Move "line" of data back into original coordinate system
C

DO 200 I - 19N
DO 190 J - 193

MUT1(IJ) - CT1(JI) + MBAR1(J)
MUT2CI,J) - CT2CJ,I) + MBAR2CJ)

C
C ... Compute residuals for each track
C

RESIDl(I9J) - TRI(I,J) - MUT1CIJ)
RESIO2(1,J) = TR2(IvJ) - MUT2(IJ)

190 CONTINUE
200 CONTINUE

C
C... Write the set of residuals out to the file RESIDUAL.DAT
C

OPEN (2, FILE - RESIDUAL.DAT*9 STATUS = 'NEW')
DO 210 I = 19N

WRITE(2,330) (RESID1(IJ),J=193),(RESID2(I,J),J=1,3)
210 CONTINUE

C
C ... Compute the covariance matrix of the residuals
C - ... (Note : column averages are identically zero)
C
C...Call routine to multiply matrices A(t)xB, then divide
C... by N-i
C

* CALL VMULFM(RESID1,RESIDI,N,3,3,130,130,COV1R,3,IER)
-. A CALL VMULFM(RESID2,RESID2,N,3,3,130,130,COY2R,3,IER)

DO 230 I = 1,3
DO 220 J = 193

COVIR(I,J) = COVIR(IgJ) / DBLE(N-1)
COV2R(I,J) = COV2R(I,J) / DBLE(N-1)

220 CONTINUE
230 CONTINUE

C
... Get "square root" of covariance matrix of residuals
C

Sol(.',:. = DSQRT(COV1R(3,3))
S02 (7,:) =DSORT(COV2R(3,3))
S01(12,3) = COVlR(2,3) / 60(3,3)

602(,3)= COV2R(2,3) /6233
SQ1(2,3) S0SR(CYR 2(3,3)0(23)*2
S02(2,2) = DSQRT(COV1R(2,2) - SD2(2,3)**2)
S02(2,3) = COV1(VR(1,3) -601(3,3)*2
602(1,3) = COV2R(1,3) / S01(3,3)
SQ2(1,3) - COVR(1,2) / S1(1,3)*SI23)/6122
SQ2(1,2) = (COV2R(1,2) - SQ2(1,3)*SQ2(2,3)) / 6Q2(2,2)
6021,2 (V2R(1)2 -DRTCV(1)S0 (1,*S2*2+SO1 / SQ3)*2)

S02(1,1) = DSQRT(COV2R(1,1)-(602(1,2)**2+6Q2(1,3)**2))
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SQ1(2,1) 0.
SQ2(291) 0.
SQ1(3,2) 0.
S02(3,2) -0.

SQ1(311) 0.
. S2(3,1 ) 0.

C
C...Compute sets of residuals and got rotation/displacement
C... values
C

DO 410 SIMS - 1,TRACKS
C
C... Compute set of simulated residuals from normal (0,1)
C... deviates
C

DO 260 I - 1,3
C
C...Call routine to generate Normal (0,1) deviates
C

CALL GSNPM (SEED,2*N,NORM)
DO 250 J = 1,N

RESID1(J,I) = NORM(J)
RESID2(J,I) = NORM(N+J)

" 250 CONTINUE
260 CONTINUE

C
C...Call routine to multiply matrices AxB(t)
C

CALL VMULFP(SQ1,RESID1,3,3,N,3,130,SIM1,3,IER)
CALL VMULFP(SQ2,RESID2,3,3,N,3,130,SIM2,3,IER)

C
C...Put together Nx6 matrix of simulated tracks for both
C...arrays by adding straight line in original coordinate
C...system to residuals
C

DO 280 I = 1,N
DO 270 3 = 1,3

SIMTRK(I,J) = SIMI(J,I) + MUT1(I,J)
SIMTRK(I,J+3) = SIM2(J,I) + MUT2(I,J)

- 270 CONTINUE
280 CONTINUE

C
C.. .Write the first simulated track out to the file
C...SIMTRACK.DAT if a sample simulated track was requested.
C

IF((SIMS ED. 1) AND. (TRKOUT GT. 0)) THEN
OPEN (3, FILE = 'SIMTRACK.DAT', STATUS = 'NEW')
DO 285 I = 1,N

WRITE(3,340) (SIMTRK(I,J),J = 1,6)
- - 285 CONTINUE

END IF
C
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C... Fed the simulated track into KEYMAIN to got rotation
C...and displacement numbers
C

CALL KEYSUB(SIMTRKN,DATAIDL,IDR)

C...Make 2 matrices - one for displacement data and one for
C....the rotation data
C

DO 290 I - 1,4
DISP(SIMSI) - DATA(1,I)
ROTATE(SIMS,I) - DATA(2,I)

- 290 CONTINUE
WRITE(*,320) SIMS

C
C...Go back and do it again
C
410 CONTINUE

C
C...After TRACKS simulated tracks, write the displacement
C...sets and the rotation sets out to a file
C

OPEN(4,FILE = 'DISPLACE.DAT',STATUS = 'NEW')
OPEN(5,FILE = 'ROTATE.DAT'gSTATUS = 'NEW')
DO 300 I = 1,TRACKS

'1 300 WRITE(4,310) (DISP(I,J),J = 1,4)
" WRITE(5,310) (ROTATE(IJ),J = 1,4)

300 CONTINUE
C
C...Close out the files
C

CLOSE(UNIT = 2)
CLOSE(UNIT = 3)
CLOSE(UNIT = 4)
CLOSE(UNIT = 5)
STOP

310 FORMAT(2X,4F17.8)
320 FORMAT(2X,'Through KEYMAIN ',16,' time(s) so far')
330 FORMAT(1X,6F12.7)
340 FORMAT(1X,6F12.5)

END
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APPENDIX E

FORTRAN SUBROUTINES CONECT AND REDUCE

The program KEYMAIN requires that any array for which

correction estimates are desired must be "connected" to the

first input sensor array by one, or a series of, crossover

data sets. For example, if an input crossover data set uses

ensor arrays 5 and 6, while another uses arrays 6 and 10,

all three of the arrays (5, 6 and 10) are connected. If,

however, a first input data set uses arrays 7 and 9, a

second input data set uses 12 and 10, while a third input

data set uses 9 and 13, the arrays 7, 9 and 13 are

connected, 12 and 10 are connected, but all five arrays do

not form a single connected set. In this case, if 7 was the

first array input to the program, correction estimates could

not be made for arrays 10 and 12. The subroutine CONECI

checks to see that connectedness exists in the input data

before KEYMAIN is allowed to continue.

KEYMAIN allows 3 options if CONECT discovers that the

arrays of the input data sets are not connected. One option

is to quit, in which case the program terminates. Another

option is to add more data so that all the arrays are

,e%40.connected. In the second example above, for instance, if a

crossover data set using arrays 9 and 12 was input into the

program, all 5 arrays would then be connected and KEYMAIN
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would continue. A third option is to continue with KEYMAIN,

but use only the first connected set, that is, all the

arrays that are connected to the left array of the first

input crossover data set. This option presents special

problems because it requires a reduction of the data

structures that have been built as each data set was input.

The subroutine REDUCE does this data structure reduction and

is called from KEYMAIN only when this third option is

selected.

KEYMAIN passes to CONECT two pieces of information.

The first is the variable RI that represents the number of

data sets that were input into KEYMAIN. The second piece of

information is a 2 x R1 matrix, IND2, that contains the

number of the left and right sensors of the R1 crossover

data sets. Row 1 contains the left sensor numbers, row 2

the right. CONECT performs its connectedness check by

starting a variable length list that contains the array

numbers of those arrays that are connected. The list starts

with only two entries, the left and right sensor arrays of

the first crossover data set. These are connected, and the

left sensor is the "root" to which all arrays should

connect. Elements are added to the list by sequencing

through the list from the beginning, and adding to the list

any array numbers for IND2 that (1) are not yet on the list

and (2) are connected by a crossover data set to an array

that is already on the list. If, after sequencing through
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the variable length list, there are arrays remaining in IND2

that never were put on the list, those arrays were not a

part of the first connected set. If all arrays in IND2 were

included on the list, all the arrays were connected. After

the first list is exhausted, CONECT repeats this procedure

as many times as there are disjoint sets of arrays, starting

each new list with the arrays of a data set not in any

previous set. CONECT informs the user of the individual

sets of connected sets of arrays and raises a flag to alert

the user if all sets were not connected.

If all the arrays in the input crossover data sets were

not connected, the user has three options to proceed,

described earlier. If he chooses to continue using the

first set of connected arrays, REDUCE is called to pare the

data strauctures built up during the data input process. In

particular, the R1 x 3 x 3 array CROSSA and the RI x 6

matrix mean need to be reduced to contain only those

elements that correspond to the data sets in the first

connected set. CROSSA, which has R1 "pages" of 3 x 3

matrices of crossproduct deviations from the mean, needs to

have those pages removed that correspond to every crossover

data set in the original input not connected to the first

array. MEAN, which has RI rows of the colunm averages for

each data set, needs to have those rows removed that

correspond to data sets not connected to the first array.
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The variable R1 itself will be reduced to reflect this

smaller subset of connected array pairs.

CONECT stores the information that indicates which data

sets in IND2 are connected to the first array. This

information is passed to REDUCE through KEYMAIN. REDUCE

reforms the data structures to reflect the smaller number of

data sets now being considered by KEYMAIN.

CONECT also provides the matrix IND1, a K x R1 matrix

that is used elsewhere in KEYMAIN. The Ri columns represent

the crossover data sets input into KEYMAIN. The variable K

represents the number of individual arrays in the R1 data

sets, each row representing a separate array. For each

column in IND1, the entries are all 0 except in the rows

that represent the left and right sensor for that column's

data set. If the row corresponds to the left array, the

value is 1. If it corresponds to the right array, the value

is 2. If REDUCE is called, some columns (representing

crossover data sets) and rows (representing individual

sensors) of IND1 need to be omitted. REDUCE reforms IND1 to

its smaller size.
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APPENDIX F

FORTRAN LISTING FOR SUBROUTINE CONECT

SUBROUTINE CONECT (OUTRlIND2,KIND1IIATESTCIND2R,
. DATSET)

C

C This subroutine checks for the connectedness of the
C input data sets. If the problem is connected then the
C user is informed and the array pairs are printed on the
C screen; if not connected, then the user is prompted to
C select one of three options - quit, add conecting data
C sets, or run the program using the first connected set
C that was input. Gygax - July 1985

C
C ...Variable declarations.
C

INTEGER*4 R1,KIND2(2,30),IND1(30,30),I,J,IA(30),FIRSI
INTEGER*4 LIST(30)sBEGINHALTDISCON,L,MOTESrCOUI,
INTEGER*4 DATSET(30),COUNTSAVE(2930), IND2R(2,30)

C
C ...Initialize the values of FIRST and COUNT:
C

FIRST = 0
COUNT = 0

C
C ...Make vector IA - list of all arrays (w/o repeats)
C in IND2 and get the value for K = # of individual
C arrays.
C

IA(1) = IND2(1,1)
IA(2) = IND2(2,1)
K =3
IF (RI .EQ. 1) GOTO 60
DO 50 I = 1,R1

DO 40 J = 1,2
M K- 1
DO 30 L = 1,M

IF (IND2(J,I) .EQ. IA(L)) GOTO 40
30 CONTINUE

IA(K) = IND2(J,I)
KK+ I

40 CONTINUE
50 CONTINUE
60 K K - I

C
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WRITE(OUT,*) 'Rl 'R1
WRITE(OUT,*) 'K ,K

C ... For each column of INDI (columns correspond to
C data sets) the entries are all zero except for
C the row that corresponds to the left array (= 1)

C and the right array (= 2).
C

DO 80 I = 1,R1
DO 70 J = 1,K

INDI(J,I) = 0
IF (IND2(1,I) .EQ. IA(J)) INDI(J,I) = 1
IF (IND2(2,I) .EQ. IA(J)) IND1(J,I) = 2

70 CONTINUE
80 CONTINUE

C
C ... Check to see if all the arrays are connected.
C

TESTC = 1
LIST(l) = -IA(l)
DO 131 I = 1,R1

IF (IND2(1,I) .EQ. -LIST(1)) IND2(1,I) =-IND2 ( ,!I
IF (IND2(2,1) .EQ. -LIST(1)) IND2(2, 1) =

131 CONTINUE
BEGIN = I

HALT = 1
140, IF (.NOT. (BEGIN .LE. HALr)) GOTO 170

NODE = LIST(BEGIN)
BEGIN = BEGIN + 1

DO 150 1 = 1,R1
1F (.NOT. ((NODE.EQ. IND2(1,1) .AND. (IND2(2, f[ .1.1

• GOTO 150

HALT = HALT + t
LIST(HALT) = -IND2(2,I)
DO 141 J = 1,R1
IF (IND2(1,J).EQ.---! IST(HALT) I -2 , J - I ML)", '
IF (IND2('2,J) .EO.-LIST(HALT) P- 41D21:,41

1 41 CONr I NUE
S5,7 tIiNTINLJE

1 ] l6() I = I,R!
iF (.;Or. ( QI'NODE.EQ. IND2 2, (1 . ND2 , .'.

* G OTO 1.0

HALr = HALT + I
LIST-<HALT) = -[ND2(1,I)

00 15I J = 1,R1
IF (IND2(IJ).EQ.-LIST(HALT) [ND2(I ,J
IF uND22.J).EQ. -LISTrHALT) [N02 (2 J) -ND..

15 1 corr . NlIE
CCNTINUE
GOTO 141-

I 7,. Cf N [ HU
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C
DISCON =0

WRITE (OUT,230)
DO 200 I = 1,R1

- -IF (IND2(1,I) .LT. 0) ITO 190
IF (IND2(l,I) .ED. 0) SLTOr 200
IF ((IND2(1,I) .GT. 0) AND. (DISCON .20. 1)) GOTO 200t~
FIRST = FIRST + 1
DISCON = 1
TESTC = 0
BEGIN = 1
HALT = 1
LIST(1) = IND2(1,I)
GOTO 200

190) WRITE(OUT,240) -IND2(1, I) ,-IND2(2,I)
IF ((FIRST.EQO0).OR.((FIRST.EO.1).AND.(DISOCON.EO.1V'J

- - *THEN

COUNT = COUNT + 1
IND2R(1,COUNT) =-IND2(1,ID

IND2R(2,COUNT) =-IND2(2,I)

DATSET(COUNT) =I

END IF
SAiVE(1,I) = -IND2(1,I)

-Ae(2I = -IND2(2,I)
I ND2 (1,I1) = 0
IND2(2,7I) =0

'20 CONTINUE
IF (DISCON .EQ. 1) GOTO 140
DO 220 1 1,R1

IND2(1,1) = SAVE(1,I,
1ND221) = SAVE(",

22) CONTINUE
RETURN

~UFORMA(1X,'THE FOLLOWING PAIRS ARE CONNECTED
20FORIMfT(1X,1415)



APPENDIX 6

FORTRAN LISTING FOR SUBROUTINE REDUCE

SUBROUTINE REDUCE (CROSSAMEANR1KINDIIA,
• IND2RDATSET)

C

C This is a specialized subroutine that is used when
C option three is invoked as a result of a failed con-
C nectedness test. The disconnected data sets must be
C removed from the variables CROSSA and MEAN, and other
C program supporting variables must be adjusted.
C 8ygax - July 1985

C
C ... Variable declarations.
C

INTEGER*4 R1,K,IND1(30,30),IA(30),IND2R(2,30),I,J,L,
2 MDATSET(30)

C
REAL*8 CROSSA(30,3,3),MEAN(30,6)

C
C ... Compute the new, reduced RI:
C

DO 10 I = 1,30
IF (IND2R(1,I) .EQ. 0) SOTO 20

10 CONTINUE
20 R1 = I - 1

C
C ... Make new, reduced vector IA = list of all arrays
C in IND2R w/o repeats. Also, compute a new K.
C

IA(1) = IND2R(1,1)
IA(2) = IND2R(2,1)
K=3
IF (RI .EQ. 1) GOTO 60
DO 50 I = 1,R1

DO 40 J = 1,2
M =K- 1
DO 30 L = 1,M

IF (IND2R(JI) .EQ. IA(L)) GOTO 40
30 CONTINUE

IA(K) = IND2R(JI)
KK+ I

40 CONTINUE
50 CONTINUE
60 K K -I
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C
C ... Remake the reduced matrix INDI - for each column
C in INDI (corressponding to a data set) the
C entries are zero except for the entries corres--
C ponding to the left array ( 1) and the right
C array (= 2).
C

DO 80 1 = 1,R1
DO 70 J = 19K

IND1(JqI) = 0
IF (IND2R(1,I) •EQ. IA(J)) IND1(JI) = 1
IF (IND2R(2,I) EQ. IA(J)) IND1(JI) = 2

70 CONTINUE
80 CONTINUE

C
C ... Reduce the arrays CROSSA and MEAN to account
C for the removed data sets.
C

DO 120 I = 1,R1
DO 90 J = 1,6

MEAN(I,J) = MEAN(DATSET(I)IJ)
90 CONTINUE

DO 110 J = 1,3
DO 100 L = 1,3

CROSSA(I,3,L) = CROSSA(DATSET(I),J,L)
100 CONTINUE
110 CONTINUE
120 CONTINUE

RETURN
END

104. . ..- - - - - -
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